Centro de gravedad


En cuanto al tamaño o peso del objeto en movimiento, no se presentan problemas matemáticos si el objeto es muy pequeño en relación con las distancias consideradas. Si el objeto es grande, se emplea un punto llamado centro de masas, cuyo movimiento puede considerarse característico de todo el objeto. Si el objeto gira, muchas veces conviene describir su rotación en torno a un eje que pasa por el centro de masas.
El centro de gravedad o baricentro o centro de masas, es un punto donde puede suponerse encontrada todo el área,peso o masa de un cuerpo y tener ante un sistema externo de fuerzas un comportamiento equivalente al cuerpo real.

LA fuerza más corriente que actúa sobre un cuerpo es su propio peso. En todo cuerpo por irregular que sea, existe un punto tal en el que puedo considerarse en él concentrado todo su peso, este punto es considerado el centro de gravedad .
El centro de gravedad puede ser un punto exterior o interior del cuerpo que se considere.
El conocimiento de la posición de los centros de gravedad, es de suma importancia en la resolución de problemas de equilibrio, porque son los puntos de aplicación de los vectores representativos de los respectivos pesos.
El centro de gravedad de una línea está en el punto de aplicación de un sistema de fuerzas paralelas aplicadas a cada uno de los fragmentos elementales en que se puede considerar descompuesta la misma y proporcionales respectivamente a las longitudes de estos elementos de línea. Si se trata de un elemento rectilíneo, el centro de gravedad se haya en su punto medio. El de un arco de circunferencia puede calcularse mediante recursos de cálculo referencial, y se encuentra situado sobre el radio meio, a una distancia del centro.
En conclusión el centro de gravedad es el punto en el que se encuentran aplicadas las fuerzas gravitatorias de un objeto, o es decir es el pto. en el que actúa el peso. Siempre que la aceleración de la gravedad sea constante, el centro de gravedad se encuentra en el mismo punto que el centro de masas1.
El equilibrio de una partícula o de un cuerpo rígido también se puede describir como estable o inestable en un campo gravitacional. Para los cuerpos rígidos, las categorías del equilibrio se pueden analizar de manera conveniente en términos del centro de gravedad. El Centro de gravedad es el punto en el cual se puede considerar que todo el peso de un cuerpo está concentrado y representado como una partícula. Cuando la aceleración debida a la gravedad sea constante, el centro de gravedad y el centro de masa coinciden.
En forma análoga, el centro de gravedad de un cuerpo extendido, en equilibrio estable, está prácticamente cuenco de energía potencial. Cualquier desplazamiento ligero elevará su centro de gravedad, y una fuerza restauradora lo regresa a la posición de energía potencial mínima. Esta fuerza es, en realidad, una torca que se debe a un componente de la fuerza peso y que tiende a hacer rotar el objeto alrededor de un punto pivote de regreso a su posición original.
Un objeto está en equilibrio estable mientras su Centro de gravedad quede arriba y dentro de su base original de apoyo.
Cuando éste es el caso, siempre habrá una torca de restauración . No obstante cuando el centro de gravedad o el centro de masa cae fuera de la base de apoyo, pasa sobre el cuerpo, debido a una torca gravitacional que lo hace rotar fuera de su posición de equilibrio.
Los cuerpos rígidos con bases amplias y centros de gravedad bajos son, por consiguiente más estables y menos propensos a voltearse. Esta relación es evidente en el diseño de los automóviles de carrera de alta velocidad, que tienen neumáticos y centros de gravedad cercanos al suelo.
El centro de gravedad de este auto es muy bajo por lo que es casi imposible que se voltee.
También la posición del centro de gravedad del cuerpo humano tiene efectos sobre ciertas capacidades físicas. Por ejemplo, las mujeres suelen doblarse y tocar los dedos de sus pies o el suelo con las palmas de las manos, con más facilidad que los hombres, quienes con frecuencia se caen al tratar de hacerlo. En general, los hombres tienen el centro de gravedad más alto (hombros más anchos) que las mujeres (pelvis grande), y es por eso que es más fácil que el centro de gravedad de un hombre quede fuera de apoyo cuando se flexiona hacia el frente.
Cuando el centro de gravedad queda fuera de la base de soporte, el objeto es inestable (hay una torsión desplazadora).
En los circos usualmente hay actos de acróbatas y lo que sucede es que el acróbata, cualquiera sea el acto que haga tiene una base de soporte muy angosta, o sea el área pequeña del contacto de su cuerpo con su soporte. Mientras que el centro de gravedad permanezca sobre esta área, él está en equilibrio, pero un movimiento de unos cuantos centímetros sería suficiente para desbalancearlo.
Aplicación del centro de gravedad.-
El centro de gravedad sirve para calcular el equilibrio de un sistema, este sistema puede ser infinidad de cosas, por ejemplo una casa, y aquí el centro de gravedad ayudaría a calcular a la persona que guía la construcción, los puntos en los cuales poner las columnas y /o la columna principal..
Relación con el moméntum.-
En algunos problemas que contienen de materia o en ellos interfiere el momento lineal, o talvez se resuleven por sumatoria de momentos, el centro de gravedad ayuda a simplificar notablemente estos ejercicios.
Ejemplo.- Calcule las fuerzas que se aplican al siguiente sistema.-
L/3 L/2
FA 10kg 20 kg FB
Por momento.-
Smatoria Fy = 0
FA +FB - 10 -196 = 0
FA + FB = 206
Sumatoria de momentos desde el punto A = 0
10x (L/3) + 196(L/2) - FB. L =0
L(10/3 + 196/2 - FB) = 0
20 + 588 - 6 FB =0
608/6 = FB = 101,3 N
FA=206-101,3
FA=104,7 N
Por centro de gravedad.-
Sacamos el CG =
(L/3 x10 + L/2 x 20)/(10 + 20) =
(10/3 L + 10 L)/30 = (40/3 L)/ 30 =
4/9 L = 0,444444
Centro de gravedad = X/masas
0,444444L = FB/30
FB= 101,3 N
Por lo que vemos que podemos resolver por cualquiera de los métodos.
Ejemplo 7(Ejercicios de centro de gravedad en general)
Si tenemos un grupo de bloques idénticos, de 20 cm de largo, se apilan de modo que cada uno sobresalga del bloque anterior 4.0 cm, y se coloca uno encima de otro. ¿Cuántos bloques se podrán apilar de esta forma antes de que la pila se caiga?
La pila se caerá cuando su centro de masa no esté más sobre su base de apoyo. Todos los ladrillos tienen la misma masa, y el centro de masa de cada uno está colocado en su punto medio.
Si tomamos el origen en el centro del ladrillo inferior, la coordenada horizontal o de masa (o centro de gravedad) para los primeros dos ladrillos del rimero está dada por la ecuación de CM en donde m1 = m2 = m y x2 es el desplazamiento del segundo ladrillo:
Xcm2 = (mx1+mx2) / (m + m)
Xcm2 = m(x1+x2)/ 2m = (x1+x2)/2 = (0+4.0 cm)/2 = 2.0 cm
Las masas de los ladrillos se cancelan (debido a que todas ellos tiene la misma masa)
Para tres ladrillos, Xcm3 = m(x1+x3+x2)/ 3m = = (0+4.0+8.0)/3 = 4.0 cm
Para cuatro ladrillos, Xcm4 = m(x1+x3+x4+x2)/4m= (0+4.0+8.0+12)/4 = 6.0 cm
Y así se sigue sucesivamente.
Esta serie de resultados demuestra que el centro de masa del rimero se mueve horizontalmente, 2.0 cm por cada ladrillo que se agregue. Para una pila de seis ,el centro de masa estará a 10 cm del origen, directamente sobre el borde del ladrillo inferior (2.0 cm x 5 ladrillos adicionados = 10 cm, que es la mitad de la longitud del ladrilio), de modo que el primero estará en equilibrio inestable. Esto significa que la pila puede no caerse si colocamos el sexto ladrillo con mucho cuidado, pero es muy difícil que en la práctica se pueda lograr. En cualquier caso, el séptimo definitivamente hará que la pila se caiga.













  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • Twitter
  • RSS

0 Response to "Centro de gravedad"

Publicar un comentario en la entrada